La presencia del arsénico en el líquido para consumo humano va en aumento debido a que lo extraemos de pozos cada vez más profundos y, por lo mismo, su calidad cambia, indica Francisca Rodríguez, investigadora de la FES Cuautitlán de la UNAM
Fabiola Méndez
El arsénico (As) está presente de forma natural y en niveles altos en las aguas subterráneas de países como Argentina, Bangladesh, Camboya, Chile, China, Estados Unidos, India, México, Pakistán y Vietnam, como señala la Organización Mundial de la Salud (OMS).
Mientras que hay entidades donde se establece que el As no debe rebasar los 10 microgramos (μg) por litro, la norma mexicana establece 25 μg por cada mil mililitros. Las principales fuentes de exposición son por bebida o por cultivos regados y alimentos preparados con agua contaminada.
A decir de Francisca Alicia Rodríguez Pérez, investigadora de la Facultad de Estudios Superiores (FES) Cuautitlán, el arsénico en agua destinada a consumo humano es un problema en aumento debido a la sobreexplotación de los acuíferos. “Cada vez tenemos que hacer la extracción hídrica de pozos más profundos y sus características cambian. La calidad del agua bebible hoy no es la misma que la de hace 40 años”.
El As inorgánico es un compuesto carcinógeno confirmado y un contaminante químico que puede estar presente en el agua bebible de ciertos lugares. Hay arsénico inorgánico y orgánico, y mientras que los compuestos del primero (como los hallados en el agua) son muy tóxicos, los del segundo (como los que tiene el marisco) son menos perjudiciales.
Los síntomas inmediatos de intoxicación aguda incluyen vómitos, dolor abdominal y diarrea, seguidos de entumecimiento y hormigueo en las extremidades, calambres musculares y, en casos extremos, la muerte.
La sintomatología inicial de la exposición prolongada a altos niveles de As inorgánico se observa en la piel e incluye cambios de pigmentación, lesiones cutáneas, durezas y callosidades en palmas de las manos y plantas de los pies. Tales efectos se dan tras una exposición mínima de cinco años y pueden ser precursores de carcinomas y melanomas. El contacto continuo con el As también causa cáncer de vejiga y pulmón.
Una alternativa creada por estudiantes
Para abordar este problema, alumnado de la carrera de Química Industrial de la FES Cuautitlán, con la profesora Rodríguez como líder, proponen un método electroquímico para extraer el arsénico del agua.
Se trata de la combinación de dos procesos híbridos: la electrodiálisis y el intercambio iónico. La combinación de ambos da como resultado la electrodeionización, un método de tratamiento hídrico que utiliza electricidad, resinas y membranas de intercambio iónico para separar las especies iónicas del agua y transferirlas a un recipiente con solución a concentrar o fluido residual. El resultado: la purificación del líquido “No se necesitan reactivos químicos, sólo se precisa corriente eléctrica”, detalló.
Dicho método utiliza cuatro compartimentos. Por dos de ellos pasa una solución de enjuague y por los restantes el agua con arsénico (estos no se mezclan, pues se colocan membranas de intercambio iónico). Al aplicarse potencial eléctrico el líquido corre y los iones de arsénico que están en el compartimento con resina se trasladan de un espacio a otro, separando el contaminante dentro de la celda.
En un compartimento los iones se concentrarán y en el otro se diluirán para obtener agua pura sin dicho metaloide. Este proceso no es selectivo y separará todos los iones presentes en el líquido tratado. “Puede atraer calcio, magnesio, cloruro, sulfatos y nitratos”, detalló. Sin embargo, esto no es del todo positivo, pues para que el agua sea potable debe tener ciertos iones. “Es una de las desventajas, las sales separadas y que necesita el agua se tendrían que agregar una vez removido el As”, dijo.
A partir de este método ya lograron extraer arsénico de soluciones sintéticas. Lo que sigue es hacer pruebas con muestras de agua de la presa de Zimapán, en Hidalgo, donde los pobladores ya experimentaron problemas de salud por altos niveles de dicho elemento en el agua.
Estos han sido los resultados de dos años, pero aún falta para llevar esto a una escala mayor. “Estamos examinando diferentes arreglos en la celda. Al inicio se probaba sólo con membranas en un compartimento, mientras que en otro teníamos la resina de intercambio catiónico y membranas”, explicó la doctora en Ciencias Químicas.
Ahora, la meta es perfeccionar el método para que la industria interesada “realice la separación con un consumo mínimo de energía, es decir, lograr una mayor remoción de iones con el menor costo”.
También es preciso detectar y cuantificar la presencia de contaminantes en los reservorios hídricos bajo tierra. Los problemas se perciben una vez que se ha transportado el líquido de un manantial, río o pozo, pues las impurezas suelen pasar inadvertidas hasta que los humanos la beben y se ven afectados, detalló la especialista.
Proyectos como el de la profesora Rodríguez Pérez son importantes por lo difícil que resulta purificar las aguas subterráneas. “Este método para limpiar o separar un contaminante es nuestro granito de arena a la solución de este problema, es lo que nos motivó en esta investigación”.
Entradas relacionadas